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We study CRN composition by classifying the
Computing Functions obliviously-computable functions Main Result: Full Classification

- ~ (Integer-valued functions computable by CRNs that don’t use the output signal as a reactant)
4 ) :
f(x) = 2x f(x1,%2) = min(x4,x3) /f(xl, X5) = max(Xq, X2\ 4 . ) : : :
ot nput . 1 ot ¥ Warmup: 1D Classification Representative examp e Quilt-afrine functions
: nput: 44,43 , .. A2
X = 2Y Output: ¥ X1 + XZ - Y Output: ¥ Output: ¥ p e (obliviously-computable f: N“ — N)
Affine function: linear with constant offset
L0007 RExk L ® X > 4+ Y ) - o e
O® == ]»f(3) 6 == 00 F(42) =2 . . . min of 2D ) .
000 X, X, 1 . 1D Quilt-affine function: linear with periodic offset
ot T AT °f Representative obliviously-computable f: N - N | ~ ™ f | auilt-affine il oo it PSR
tocompute £(3)  reactions initial configuration  sequence of X N Z L Y CRN COnStrUCtiOn functions : eneralizes “periodic staircase” behavior from 1D to higher dimensions
to compute f(4,2) reactions 2 2 ) \ affine ( \
~ SR J Z D e ~ / ( ) \ Input: X Output: ¥ 1D functions {ﬁ‘ A 4 )
. . % . . — - X) 4 Leader: L ininitial config. C]Uilt- 2] 930 1
/" We study Chemical Reaction Networks SNA Strand Displacement + 2 Tlgﬁo.reml. f:N->N EI | f eager: & Gf ininftalconfie) - | a
(CRNs) that compute integer-valued mplementing A + B — C D+Y — @ 0 'YI'F)US V‘CodmpUt(aj e f N X , l:I—; 1Y2_I;/L-|(—) , ! s ]
i . Nd semilinear and nondecreasin 2 0 - 1 : ;
functions (f: N9 = N). 7 2 — _ g) ’ 0
e JOIN K Works because max(x1,x,) = X1 + X, mln(xl,xz)J 1m L]_ + X — 1Y + L2 _ X, o
Motivation: Artificial CRNs have been implemented by technology called DNA - 2 . 2 LZ + X - 1Y + L3 xZ o 1 2 3 4 x © 4 5 . s ° 1
Strand Displacement, so CRNs can be viewed as a programming language for B Proof idea: semilinear, nondecreasing f:N - N will have the 0 arbitrary finite o o
Qolecular computation. [Microsoft Research Cambridge]J structure pictured here, wit.ha”per.iodicsta!ircase”.for.Sl.JfficientI.y 1* L3 + X RN OY + PT behavior n= (4’4) l%x _ %  x + B(Z mod 2) is quilt-affine, g0 =(1,2) - x + B(Tm_od 3)is thfine,
st havethe same slope for 1 be nondecranning. | \ / where B(0) = 0 and B(T) = —1,2 where B = 0 except B((12)) = B((ZD) = 1
construction aleader and multiple “auxilliar ea. erspecies”. — — and B(m) =2
ﬁ'\iﬁitivelith;Ieadtleri:terac’:lswit:ep\I/eryinpllIJt, grlodjcesfhecorrect Pl + X - 1Y + P2 \ J \ J
finite output, and “changes states” to track the number of inputs that [)7 _I_ X RN OY _|_ [)6
have been processed (eventually wrapping around mod p).
"y . Pg+X - 2Y + P y Theorem: f: N% — N is obliviously-computable ©
\_ _ i. [nondecreasing] f is nondecreasing.

ii. [eventually-min] there exist quilt-affine g4, ..., g, and n € N¢ such that
f(x) = mkin(gk(x)) forall x = n.

N

i ) o : . iii. [recursive] every fixed-input restriction f,._, i1 fixing some input to a constant value
- e max: N? — N is NOT obliviously-computable . . . Lxi=g] T e ere .
N ra : N y | . . max is obliviously-computable (so is also eventually-min of quilt affine functions).
_ . Fa | IS Wlth max CRN No output-oblivious CRN (even with a leader) can stably compute max. Since max is semilinear Loy
f(X]_; xZ) — mln(Xl; XZ) X —_ . W and nondecreasing, the 1D classification does not hold in higher dimensions. The following K +(G —1)Y 4 g Proof outline: «: Quilt-affine functions are obliviously-computable (via general CRN construction: auxiliary leader species track
X W 1 Lemma gives a generalized pI‘OOf: 7 =: If f is obliviously computable, then period, output correct finite differences).
1 Nondecreasing condition (i) is necessary by stated Observation If f satisfies (i), (ii), (iii), then a general CRN construction shows f is obliviously-computable.
Y 0 XY@ -1 . i ventually-mi ition (i) i : compute “eventual region” as min uilt-affine functions, compu mallervalu ixed-inpu
2 X 2 A 2 7 (Lemma: Let f: N? - N, with sequence (a4, a,, ...) € N% and some\ p a; = (j,0) e i o o o soblviousy. . Tesfctions byrocursve coneion (). Combine the computationsueingaminmumand ndicators.
. d 4 4 ' computable by modifyingthe CRN computing f to “hardcode” input x; = j.
max CRN is not output-oblivious + ZZ — D Al] € N” foreach i < J such that Y
lc;ftuptl:t)-(lx?xz o/ D+W = @ f(a; +4i) — f(a) > f(a; + A;5) — f(a)). a; = (i,0) . . .
| e resclons Then f is not obliviously-computable. 2 Continuous Limit
species) works < upstream CRN is compete W % 2 Y \ J xl
.. . output-oblivious
\ output-oblivious min CRN can be composed J \ ‘ / For max(x,,x,), take @; = (i,0)and A;; = (0, ), then max(i,j) — max(i,0) = j — i > max(j,j) — max(j,0) =0 / \
( . o . ] ] ] \ Proof idea: considera sequence 0; of correct output configurations to compute each f (a;). Then Qi < 0; forsome i < j (by Dickson’s Lemma). T.hen addingA;; moreinputto 0; can produce. 1 1 1 lVI atc h es O b I iVi O u S I - CO m uta b I e
Output_ObI IVIOUS CR N : Output Y |S never a rea Cta nt (Ieft Slde) |n a rea Ctlon {n(uczi;l-oﬁsiﬁ)m;{tgtgatr;:)trizL:]'zz)l:'ics(;oos;tzg:iyv?glrjzrylizr{q(pcllft:l;é‘ij)). We then show a sequence of reactions can overproduce the output when computlngf(a]- +Al-j).ThusanyCRN stably computing max Exa m p | e Sca | I ng | I m It y p
classification from continuous model

f min of linear
functions when

\Obliviously-computable function: computable by some output-oblivious CRNJ

[ ]
Kev Proof Techniques T g inear at
linear at X, = 0 [Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. Composable rate-independent

xi =0 computationin continuouschemical reaction networks. In Computational Methodsin Systems Biology, 2018.]
1=

[
Sta b I e co m p u tat I O n - ~ gave a classification of output-oblivious real-valued functions stably
Key technical result | Lemma: Obliviously-computable f must be a min of quilt-affine computed by continuous CRNs {using concentration of species).
(showing the [eventually-min] condition f . £ Fici Iv | . Our function class, in a scaling limit, corresponds to precisely their
Model DefinitioNs: cansdefined byfinite sets of species and reactions. To ii. of the main theorem is necessary) - unctlons( or sutriciently large mput). ) function class (superadditive, positive-continuous, piecewise
Rate_ I n d e e n d e nt IVI O d e I stablycomputef:Nd — N, defineinput species X1, ..., X; and output species Y. Encodeinputx € rationa| |inea|").
p N9 with input species in the initial configuration (along with 1L, the optional leader species). A ( \
correct stable configuration (#Y = f(x) can no longer change) must always be reachable by applying Motivating Example: E . & % W ) N
a sequence of reactions. f.l 5 L/ ;% ' 4
X1 + 1 if X1 < X <+—region Dy
o, ° o . o
Intuitively, stable computation = probability 1 convergence to correct answer flria5) =4 %2+ 1 x> X5 eregond, S O en uestlons
. X1 if X1 = X <«—regionU s
(no matter the rate / order of the reactions). o cuitatmetinions  Domainhas3regions  Dihassumiaueauit  gGax)=xiisa;n  overagingthe extensions from
f = min ('gl, gz, gU) %, + 2 affine extension extension from region D, and D, gives gy, with gy = f
91 =X1,92 = X2,9y = I > ] 91(xg,x2) = x1+1 U,butg < fonD; on U and gy = f everywhere . . . .
d : : ore [Ho-Lin Chen, David Doty, and David Soloveichik. - General constructions relied on unique leader species.
Theorem: f: N® — N is stably computable < f is semilinear | oetrministictuncion computation with chemicl - ~ Leaderless case S
reaction networks. Natural Computing, 2014. Droof ideas. %, recc(5) New necessary condition without a leader:
(" iy N ' . . . . . TN
f(x)ii .°  Example semilinear f:N — N Semilinear function (f: N% — N)anieunionor f is semilinear (piecewise affine on semilinear domains). superadditivity (f (x) + f(y) < f(x + y) forall x,y)
1; . x/2:x = 0 mod 2 affine functions, whose domains are Z?;n('znffztioézey;?; P ¢ jnlj‘:; '(-; i all hyperplanes given by threshold sets, partition domain into rocc(4)
T S st lxsimod2a 29 X = bmodc for a € 7,b,c € Z,)sets regions (convex polyhedra). Conjecture: f:N% — N is leaderlessly-obliviously-computable & f is obliviously-
et S 1 r > _ — - Goal: For each region R find a quilt-affine function gy (the rege(2) computable and also superadditive
e ninx  Piecewise Affine  Domains are semilinear sets max: N“ — N is semilinear extension) such that g, = f on R and g = f for large input recc(1)
(defined by thresholds / mods) max(x;, x,) = X1 X1 =Xy o ior for “infini L, . . - .
- ) 2227 xg 1 < xp This is easier for “infinitely wide” determined regions: Domain N2: three threshold hypermaneicreatingﬁve regions (convex polyhedra in R2). This conjecture holds in 1D. If f is also superadditive, we can modify our 1D CRN construction to remove the leader.
Whl Ch S emilin ear fU nctions are aIs 0 - Piecewise Affine”  semilinear domains Lemma: A determined region D has a unique quilt-affine E:cgelgsr:Zr?:oir:(Fj{S;g:slqe; ;Nr:?if\IiDten:jAfiE’!clsws’lc(r)ir\]/i;cl)?:Séi?glnogoi:as{uon}(.jer_determlnEdWlth v )
extension gp, and gp = f for large inputs. ( ] o \
obliviously-computable? A k I d t
Key Definitions recc(S) recc(6) C n OW e ge m e n S
Observation: f TS Ob|ivious|y-computab|e = f iS nondecreasing Recession cone: foraregion R, the recession cone recc(R) is the set of all vectors X L x,
alonginfinite directionin R (this gives a convex cone) X9
_ _ _ _ Determined region: aregion D such that dim(recc(D)) = d X3 _
Proof |dea:fIff is decreasing, thendany CRN compI:Jtmg f must I;Ie ablelto consumtlemthe output, because some Under-determined region: a region U such that dim(recc(0)) < d recc(3) We thank Anne Condon, Cameron Chalk, Niels Kornerup, Wyatt Reeves,
sequence of reactions can overproduce output. Thus f is not obliviously-computable. . i ichi i i i i i i
9 P P f y-comp Neighbor: Region b is a neighbor of region U if rece(U) < rece(D), X X; 5 and David Soloveichik for discussing their related work with us and contributing
\ early ideas.
: : ®® ( 1 ) Other To stably compute f(3) = 4 thereis a sequence of reactions from | (Lemma: For an under-determined region U, consider the qu”t-afﬁne \ X xz y
For example, |ff(3) =4 > f(5) = 2: ® QQ+ the {3X} initial configuration producing 4Y extensions of all determined neighbors of U. Then by an averaging 1 —»>
process we can construct an extension g such that g, = f on U and — , _ , ,
._I_. oo e _l_.‘_l_ Other Following the same sequence of reactions from the {5X} initial gy = f for large inputs. ?zn;a;nalr\le aziz:;ﬁgzzhilsg?gﬁsgpzagng:n::jgar\_l:je;fea:r:i)ncgs?;glfenclgsiirsﬁlz:jél;zilgns Authors Supported by NSF gra nts 1619343 and 1844976.
@ ® ® @@ species configuration will overproduce Y when computing f(5) = 2 J rt’ag,io’nS is under-determined (1D ;’e'céssion cone). recc(5) C recc(6) S recc(3) so region
\_ ) \ 3 is a determined neighborofregion 5 and region 6. J



https://arxiv.org/abs/1903.02637

